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In [l 1 Painleve’ presented the foundations of a general theory of motion 
of mechanical systems with dry friction. He showed also that the hypo- 
theses of the existence of solid bodies in conjunction with the proposi- 
tion on the finiteness of the accelerations of the system can lead to 
the contradiction of the law of Coulomb friction. 

A number of scientists, among them F. Klein, R. Mises, H. Hamel and 
L. Prandtl, have participated in the discussions of this paradox. As a 
result of these considerations, there have evolved several possible ways 
of overcoming this paradox by either rejecting one of the hypotheses or 
by changing the law of friction. 

The equations, obtained by Painleve for the determination of the 
accelerations of the system with friction, in terms of the initial con- 
ditions which correspond to the zero relative sliding velocities of the 
touching surfaces, were written in such a general form that certain 
observable peculiarities of the law of Coulomb friction still remain un- 
explained. These equations are formally applicable, for example, to 
systems with nservoconnections” considered by Be’guin [ 2 1 . By consider- 
ing initial conditions which assign zero values to some of the relative 
sliding velocities, Painleve’ writes: “The investigation of the case of 
static friction is quite complicated but it is impossible to simplify 
it”, and from then on he restricts his investigation to the consideration 
of special cases. In his book there are given, however. the analyses of 
the motions of such a large number of special mechanical systems, that 
all concrete rules for the construction of the equations are clearly dis- 
played. Therefore, one does not encounter any great difficulties in the 
derivation of the general equations of motion in the form which applies 
specifically and exclusively to the law of Coulomb friction. The first 

586 
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part of the present work is devoted to this problem. 

In the second part of this work there are considered systems in which 
all the maxima of the frictional forces can be determined in terms of 
the coordinates, the velocities, time. and of the active forces, up to 
the determination of the accelerations of the system. It is shown that 
the actual acceleration of the system attains a minimum of a certain 
function depending on the acceleration, and differing from the Gaussian 
constraint only by a term which contains the maxima of the frictional 
forces. This variational principle makes it possible to isolate the 
accelerations that correspond to the law of friction even for initial 
conditions which involve zero values of some of the relative velocities 
of sliding. 

1. Let us consider a mechanical system, with holonomic coordinates 

41J . . . , q,,+k+l, subjected to ideal holonomic constraints by means of 
nonholonomic linear relations 

A iii1 + - . . + Ai,n+k+l&+k+l= o (i = l,...,Z) 

with the determination of the possible displacements 

Aiiaql+ * * * +- Ai,n+k+ldQn+k+/= 0 (i = l,...,Z) 

and the holonomic free contacts with Coulomb friction 

(1.1) 

(1.2) 

(1.3) 

which express the fact that if the relations (1.3) are equalities, then 
the points or bodies of the system slide with friction over the bodies 
of the system or over bodies which are external to the system. 

For the sake of simplicity, we assume that all constraints do not de- 
pend on time explicitly. 

‘!he law of Coulomb friction is expressed in the following form. 

Let the body S, (or point) of the system be in contact with the body 

S, at the point p in space. We assume that there exists a normal either 
to the body S, or to the body S2 at the point of contact p. If N > 0 is 
the normal force of pressure of the body S, on S, directed inward to S,, 
while v is the velocity of the point p1 of S, which is in contact with 
the body S,, then the frictional force is equal to k.N applied at the 
point p1 and directed in the opposite direction to V, where k > 0 is the 
coefficient of friction and depends only on the coordinates of the point 
of contact of the bodies S, and S,. 

Disregarding for the time being the case when v = 0, let us consider 
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the state of the system 

which corresponds to (1.2) and which is such that not a single one of 
the relative velocities is zero. 

Let us impart to the system a possible displacement 

From here on we shall assume that the first n + k displacements have 
been selected as the independent displacements. 

Let us consider all the space points pr, . . . . p, at which there occurs 
a contact. Since by hypothesis at each of these points there exists a 
normal to at least one of the bodies, we can select a coordinate system 
whose z-axis is directed along the outer normal, while the Xi- and yi- 
axes are at right angles to each other and to the z-axis, and are fixed 
in the body. 

Suppose that in consequence of the displacement (1.4) every point of 
the bodies which is at the ith contact point has received, relative to 
the ith system of coordinates, the displacements Sxi, Syi, 6zi(i = 1, 
. ..) s). 

In this manner we can number all displacements, because only one of 
two contact points can have a nonzero relative displacement. 

Since SZi vanishes when Sri+++ = . . . = S n+k = 0, the expressions Sxi, 

‘Yil “i will have the following form in terms of the Sqi: 

The work of the normal reaction and of the friction on the virtual 
displacements Sxi, Sy,, Sti is equal to 

- kiNi * h - kiNi I vi 1 2’iy 6yi $- Ni6zi 

Here vi is the relative velocity with the projections viz, viy on the 
Xi’ and yi-axes. setting in turn all of the displacements Sqi, . . ., Sq,+k 
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equal to zero except the Sqj displacement, we obtain the equation 

v!$ = Qj + i _ kiNi vi$+$j + Niaia (i = 1, . . ., n+k) (1.6) 
3 i=l 

where S is the energy of acceleration for the system without constraints 

(1.31, and Qj are generalized forces. 

If 

2S = ~ rijQiQj + PiQi + 6 
ij=l 

where yij, Bi, 6 do not depend on ;ij, then the equation 

W 
uj = - - pj = rljil + 

a& 
. . . + m+k. jin+k 

will have a unique solution since the quadratic 

(i=l,...,n+k) 

form 

is positive-definite and its discriminant which coincides with the deter- 
minant of the last system is not equal to zero. Let its solution be 

Solving the system (1.6), we obtain 

nfk 

(i=l,...,n+kj 

Setting all ;in+l, . . . , in+k equal to zero, we obtain the equations for 

the determination of the reactions 

z rr;Lj ( Qm - Pm .f i - kiNi vixaitn + viuaA + aANi) = 0 

77X=1 i=l I vi I 

(i=n+l,...,n+k) 

If it is possible by means of these equations to determine the values 
of all the linear combinations Ni on which the right-hand sides of the 
first n equations depend, and if all these linear combinations can be 
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satisfied with some positive Ni, then the motion will be determined in a 
unique way. We shall illustrate this last assertion with an example. 

Suppose that a solid body can be subjected to a plane sliding motion 

along a fixed rough path along the x-axis, on which it rests over a seg- 

ment AB. If the coefficient of friction k is constant of all points on 

the x-axis, then the frictional force will not depend on the distribution 

of the normal pressures on the segment AB, but it will depend only on 

their geometrical sum and will be equal to + kYi 1 i[, where Y is the 

sum of the projections of all the forces applied to the body upon the y- 

axis perpendicular to the x-axis, and x is the velocity of the body, This 

shows that under nonzero initial velocity conditions the motion is de- 

termined uniquely, even if one cannot determine the distribution of the 

normal pressure. 

2. 'lhe consideration of the case of zero initial velocity will begin 

with an example. 

Let us consider a light rod carrying point masses ml and m2 at the 

distance a from each other. Suppose that these masses press, upon a 

rough plane surface with a coefficient of friction k, with forces N,, 
and N, normal to the surface. Furthermore, let us suppose that a force 
F is applied in this plane to the rod at a distance b from the point ml 

in the direction from b, to b,, and forming an angle $I with the direc- 

tion from ml to m2. 

Depending on the parameters of the problem, four cases can occur: 

(1) the rod remains at rest; (2) the rod rotates around ml; (3) the rod 

rotates around mZ; (4) the rod rotates around a point O,, distinct from 

ml and m2, or it undergoes a translation. 

All the terms "rest", arotationn and ntranslationa should be under- 

stood in the sense of the distribution of the accelerations of the 

initial instant. 

In accordance with the law of friction, the state of rest will occur 

if the equations of equilibrium for the rod 

aR1 sin a, + (a - b) F sincp = 0 

aRz sin a2 + bF sincp = 0 

RI cos al + Rz cos a2 + F cos cp = 0 

(2.1) 

(2.2) 

(2.3) 

can be satisfied by reactions IR,I < kN,, 1 R, 1 < kN,. Here, al and a2 

are angles formed by the reactions RI and R, with the x-axis, directed 
from ml to m2. Ihe first two equations are the equations of the moments 

relative to m2 and ml, while the third equation represents the projec- 

tion upon the x-axis. 
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‘lhe rotation of the rod around ml with the angular acceleration 6 will 
occur if in the presence of the force kN, and the force of inertia n2a, 
directed against the acceleration of the point m2, the equilibrium equa- 
tions 

a R, sin a, + (a - b) F sin ‘p = 0 (2.4) 

a (h-N, + m+a) = bF sin cp (2.5) 

R,cosa, + Fcoscp = 0 (2.6) 

can be satisfied by a reaction 1 R, ( < kN,. 

Rotation around rn? will take place if the equations 

(kN1 + mien) a = (a - b) F sin cp 

aR,sina, + bFsincp = 0 

R, cos a ~+Fcoscp=O 

(2.7) 

(2.8) 

(2.9) 

can be satisfied by same 6 and by an 1 R, ( < KN,. 

If we denote by rl and r2 the distances of the points ml and m2 from 
the center O,, by h the distance of the line of action of the force F 
from O,, and by (kN, + ml~rl)K the projection on x of the vector ( kN1+ 
mlrrl) directed against the acceleration of ml, and so on, then the 
rotation around 0, will satisfy the equations 

(IcN, + mIerl) r1 + (kN, + mzer,) r2 = Fh 

(kNI + mp,), + (kN2 -i_ rn2~r2)~ + F cos cp = 0 

(kN, + IY~~E~~)~ + (kN, + m2Er2)y + F sin cp = 0 

(2.10) 

(2.11) 

(2.22) 

Here, the first equation represents the moments equation about O,, the 
second one is the equation of projections on the x-axis, where, in con- 
sequence of a known theorem in kinematics, the terms (kN, + ml~rl)x and 

( kN, + mFr2Jx have the same sign. ‘Ihe third equation is the equation 
of projections on the y-axis, at right angles to the x-axis and directed 
towards the force F. 

The translational displacement with acceleration w satisfies the 
equations 

kN, A m,w + kN, f m2w = F (2.13) 

(kN, + mlw) a = (a - b) F 

(kN, + m2w) a = Fb 

(2.14) 

(2.15) 

Under such a large number of distinct possibilities there arise three 
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questions : (1) Is it possible that for the same parameters there can 
occur several variants? (2) Is it possible that the equations for a given 
variant, for example the fourth one, can have more than one solution? 
(3) Ib there exist parameters for which not one of these variants can 
occur? 

Comparisons of Equations (2.2) with (2.5), of (2.1) with (2.7) and of 
(2.5) with (2.8) show that not more than one of the first three variants 

can occur. 

Since the moments of the forces R, and Ei, relative to 0, cannot be 
less in absolute value than ( KN, + mlerl)rl and ( kN, + mFr2)r-2, 
respectively, and since (2.1) contradicts (2.14%), it follows that the 
first and fourth variant also exclude each other. 

As a consequence of Equations (2.10), (2.11), (2.12) we have the equa- 
tion of the moments relative to the point m2: 

Comparing this equation with (2.4), we obtain 

(kN1 + ml~rl)y = RI sin a, 

From (2.11) and (2.6) it follows that 

As mentioned above, both terms on the left-hand side of the last equa- 
tion have the same sign. 

Squaring the terms of.the last two equations and adding the results, 
we obtain 

(kN, + m2w1)2 + 2 (kN, $- mlerl)x (kN2 + mperp).r -! 

+ (l~l’~ + m2Er2)x2 = R,’ > k2N12 

which is impossible. Comparing (2.6) and (2.13), we conclude that the 
second and fourth variant exclude each other. An analogous proof can be 
given for the third and fourth variants. 

‘thus we have arrived at a negative answer to the first question. ‘Ihis 
means that for arbitrarily given parameters there can occur only one 
variant. 

In the sequel it is convenient to denote by !i and j; the components of 
acceleration of the point ml, and by 2 and j; + 6 a the components of 
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acceleration of the point az2. We can now write the equations for the 
fourth variant in the form 

m2 (ij -t ~a) a= Fb sin cp - kN, 
a (Y + &a) -L-__ 

It is not difficult to notice that these equations are the equations 
for the extremum of the function 

S-~_Y=~m,(~~-~_~*)+~m~(~~+(~+~u)~)-F~cosrp- 

- F (y + be) sin up + kN, 1/i2 -/- y2 + kN2 6;’ + (y + ea)2 

which consists of the energy of acceleration S and of the function \I! 
which is a homogeneous function of order one in terms of the relative 
accelerations. Below we shall show for the general case that: 

a) lhe accelerations corresponding to any one of the four variants 
give an isolated minims of the function S + y 

b) lhe equations of any one of the variants admit only one solution 
for the relative accelerations (motion). (We shall say that to the first 
variant there corresponds the zero solution which is, obviously, a unique 
solution for this case); 

c) ‘Ibe function S + ul! has at least one isolated minimum; 

d) In order that the function S-I- Y have an isolated minimum at some 
point of the space of possible accelerations, it is sufficient and 
necessary that the function II, which is homogeneous of the first order 
relative to the accelerations, (a part of the deviation of the function 
Si ‘Ii) take on only non-negative values. 

In so far as (b) contains a negative answer to the second question, 
we need to give an answer only to the third question. 

Let us suppose that the first variant is not fulfilled, i.e. the 
equations of equilibrium for the rod cannot be satisfied with forces 
whose magnitudes are not larger than the maxima of the forces of friction. 
We shall show that in this case the function S+ Y has no minimnm. The 
function coincides in this case with the function 
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It is sufficient to show that the function Y? can take on negative 
values in the given case. We note that it is sufficient for this purpose 
to find a point 0,) such that the moment of the force F’, about this point 
is larger than the sum of the moments of the frictional forces about 
this center. 

Indeed, the work of all the forces for the possible displacement, 
which corresponds to an elementary rotation around O,, will then be 
negative. Since in the given case the set of admissible accelerations 
and possible displacements coincide up to within a factor, the function 
Y can be made negative, for it is lthe work of all forces on the admis- 

sible acceleration”, taken with the opposite sign. 

If ( bF sin $1 > kN,a or 1 (a - b)F sin $1 > k N,a, then Y will become 
negative when i = j; = 0 or 2 = j; + ~a = 0, that is, for rotation around 
either ml or m2. 

If none of these inequalities is satisfied, then we apply to the rod 
two forces F, and F, of magnitude kN, and KN,, respectively. We apply 
them at the points ml and m2 in such a way that their projections on the 
rod have the same sign, 
bF sin qb = 0. 

and that Flya + (a - b)F sin + = 0, Fzya + 

If these forces are not parallel, then their perpendiculars will also 
intersect at some point 0,; if neither one of them is perpendicular to 
the rod, then 0, will be the center of the resulting rotation for which 
Y will be negative. 

Indeed, the equation of moments with respect to 0, will be violated, 
since the point 0, lies outside the x-axis, and if this equation were 
satisfied it would, together with the two preceding equations, form a 
complete system of equilibrium equations. EJut this is impossible by hypo- 
thesis. 

If the forces are parallel then they will be oriented in the same 
direction, and if they are not perpendicular to the y-axis, then ‘4 will 
be negative for displacements directed in the opposite direction of the 
forces. 

In fact, the equation of equilibrium for the projections of these 
forces will be violated, otherwise all equations of equilibrium would be 
satisfied. If the forces are perpendicular to the x-axis, then kN, + 
k N,= F sin 4, and hence Y will become negative for a displacement along 
the force F. If only one of the forces, say F,, is perpendicular to the 
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x-axis, and if its magnitude is kN,, then the system of the three forces 

reduces to a nonvanishing resultant force F, directed along the x-axis 
in the direction of F,. 

Suppose that the angle between F, and the x-axis is equal to a2. If, 
without changing F,, one deflects it from the perpendicular to the x- 
axis through a small angle 6, then the center O,, corresponding to these 
two forces, can be detennined from the equations 

x1sin6- y,cos6 = 0, (X1 - U) cos CL2 - y1 sin a? = 0 

‘Ibe sum of the moments of all forces about 0, will be 

(F3 + kN, sin 6) y1 - kN1 (1 - cos 6) x1 

= [(Fs + kN, sin 6) sin6 - kN, (1 -cos6)] cos6cos~,~s~aginCz 

For sufficiently small 6 this sum can be made zero. Thus, S + Y will 
surely not possess a minimum at the origin if it is impossible to satisfy 
the equilibrium equations with reactions (forces) whose magnitudes are 
not larger than kN, and KN,. 

Let us now assume that it is impossible to satisfy the second variant. 
For the second variant the function II has the form 

II = (k-N, + m2E*n - F sin rp) i - Fi cos ‘p + kN, 1/22 + $ 

where E + is a solution of Fquation (2.5). 

It will take on only negative signs if, and only if, 

(kN2 + m2c*a - F sin cp)’ + F2 cos2 cp < k2N,2 

It is not difficult to verify that this inequality is satisfied if, 
and only if, RI2 < k2N12. Hence, the function S + Y cannot have a minimum 
at the point Z= j; = 0, c = C* if the second variant is not satisfied. 
For the third variant the proof is analogous. 

On the basis of the presented arguments, and because of property (a>, 
we conclude that the motion agrees with the law of friction if, and only 
if S+ ‘4 attains a minimum. Since in view of (cl such a minimum always 
exists, it follows that for arbitrary parameters there exists a motion 
which obeys the law of friction. If the rod is subjected to a pair of 
forces or to a force parallel to it, analogous results can be obtained. 

Sunvaing up, we find: there always exists a motion (or the state of 
rest) of a rod in accordance with the law of friction; this motion is 
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unique and yields an isolated minimum of the function S + V. 

The determination of the motions under initial conditions which in- 

volve some zero relative velocites will be accomplished by the following 

scheme: 

Suppose that at the initial instant v1 = ,.. = V, = O(r < s). 

Let us assume that i1 = . . . = GV = 0, and one of the t,,+l, . . . . i, is 

distinct from zero. Then assume that the reactions w,, . . . . I$ at the 

points pl, . . . . p, are unknown, but lie in the cones of friction and are 

directed inward the body to which they are applied; the forces of fric- 

tion at the points P,,+~, . . . . pT will be assumed to be equal to kiNi and 

to be directed oppositely to the vectors i;+l, . . . . G,. 

The choice of the frictional forces at the points P~+~, . . . . p, is 

dictated by the requirement that these, and only these, forces go over 

continuously into the forces which are directed against the relative 

velocity if the latter is not zero 11 1. 

We note also that, since vlr . . . . v,_ are zero at the initial instant, 

we have at this time 

(i&T = krr (;i)ig = hi, (i = I,..., T) 

'lhe equations of motion which are constructed in accordance with the 

indicated assumptions have the form 

+ Uij3Ni + i HliUi~1+R,iU~~2+R3iUi~3(2.16) 
i=v+l i=l 

Here the symbol ( )" indicates that in the partial derivative we 

have set 4n+l = . . . = i,,+k = i, = . . . = G, = 0. If after the imposition 

of these conditions only the quantities ;il, . . . . ;r’,, (n’ < n) remain as 

independent generalized accelerations, and if Equations (2.1) can be 

satisfied by a set Q1, . . . , ;j,,*, Ni > 0, R,ik 3 d (R,i2 + R2i2), then 

this motion does not contradict the law of friction. It it is, however, 

impossible to accomplish this, then one has to try a different but 

similar hypothesis, which consists in assuming that other relative 

accelerations are zero and the remaining ones are distinct from zero. 

In the search for motions which will not contradict the law of fric- 

tion it is necessary to make CT1 + CT2 + . . . + CT7 = 2r - 1 trials, where 

CT 
i. 1s the number of combinations of r elements with respect to i. 
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In both of the presented cases (1.6) and (2.161, the snswer to the 
question on the existence and uniqueness of a system of generalized 
accelerations, satisfying Equations (1.6) and (2.161, remains open. 

Painleve’ has shown that there can occur cases when such equations 
have no solutions or when they have several solutions. 

3. Below, we shall consider systems with initial conditions which 
correspond to several zero relative velocities and such that all Ni > 0, 
which appear in the equations for the determination of the motion, can 
be determined in a unique manner to within the determination of the 
generalized accelerations by the conditions 

. 
qn+l = . . . = &+h. = 0 

In view of the hypothesis made, one can consider as known the virtual 
work of the frictional forces at the points with zero relative velocities, 
because at these points the frictional forces are known in magnitude and 
direction. 

Let us now assume that the relative velocities v~, . . . . vT vanish at 
the points of contact pl, . . . . p7 at the initial moment, and suppose 
that among the quantities ulw, uly, . . ., u7& vTy there are o (0~; 22) 
independent variables ul, . . . , II, and some vi=’ 2, iy which can be ex- 
pressed in terms of these Vi in the form 

For the indicated initial conditions u1 = . . . = v, = 0, we have 

Vi, = Pii’Vl + a. * + Pia1ha7 Vi, = pil’il + . s m + f3:m2i’o (i = I,:! ,..., z) (3.2) 

Furthermore, the possible displacements 6Xi, ayi can be expressed in 
terms of the possible displacements v$t, . . . , v$t by means of the 
formulas 

which are analogous to (3.1). We note that in bations (3.1) and (3.3) 
we understand by ul, . . . , v, some nonzero possible velocities distinct 
from the actual zero velocities, and the indicated representation of the 
possible displacement is valid because the relations do not contain the 
time explicitly. 

Since viz, and II. 
8Y 

are zero 

(ii)ix = jirr (;i)iu = ?Jix 
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Now let vl, ...I vn be some system of no~olono~c variables which 

makes the systeu~ vl, . . . . vc complete, and let Ql'> . . . . Q,'.be the 
generalized forces, which correspond to this system of variables, and 

are composed of the active forces and the known frictional forces at the 

points with nonzero relative velocities, while S'(G,, . . . . G,,) is the 

energy of acceleration expressed in terms of new variables. 

Let us assume that in consequence of the vanishing of all of the 

Y1' .'.J VT, all of the vl, _.., II, also vanish. 

The hypothesis that G1, . . . . it, are all zero is in accord with the 

law of friction if the equations 

can be satisfied simultaneously with the inequalities 

Ii,i2 + .A!,$” -( Xi2Ni2 (3.5) 

where the Ni are known by hypothesis. 

Vie shall show that if (3.4) and (3.5) are satisfied, then the func- 
tion 

S' + y' C I$' -- i, t)i'Ei i_ i ki#iI/ii," + ;?$,a 

i=l i=l 

has an isolated minimum at the origin. For this purpose it is necessary 

and sufficient that Y? can take on only non-negative values in a neighbor- 
hood of the origin. 

The sufficiency is obvious, since under the given initial conditions 

S' is a positive-definite quadratic form in the variables V,, . . . . Gn. 
For the proof of the necessity, let us assume the opposite, that is, we 

shall suppose that Y(il', . . . . 2ino ) = - y < 0. Since UI is a homogeneous 

function of the first order, it follows that Y(tG,O, . . . . 6,“) = - ty. 

One can always find an R2 > 0 such that S'< R2(ti,2 + . . . + 6,2). There- 

fore, S' + +<R2(G,2 + . . .+; ‘1 + 1, and 

have S' + Y <R2t2(J o 2 + 1 ..A$, - ty. 

at the points tvp we shall 

It is clear that when t > 0 is 

sufficiently small than S' + Y can become negative. 

If Equations (3.4) are satisfied under 

can be expressed in the form 

the conditions (3.5), then Y 

It is clear that Ywill be non-negative if each term of this sum is 
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non-negative. ‘lhe condition for its negativeness is 

After squaring both sides of this inequality we obtain 

ki2Ni2 (Z;ix2 + ;izJ”) > Rli2bix2 + R2i2iig2 + 2R,iRziii,Gi, 

In accordance with Sylvester’s criterion, the last inequality will be 
satisfied if 

k.aN.2 - R .a 
z 1 12 RliR2i 

RliR2i 
ki2Ni2 - R2i2 20 

‘Ihis condition is obviously equivalent to 

ki2Ni2 > R,i2 + R2i2 

which is (3.5), as was to be proved. 

Ihe proof of the converse assertion, that is, the solvability of (3.4) 
under the conditions (3.5) when Y is non-negative, we have not been able 
to accomplish. One can, however, prove that if Y is non-negative in the 
neighborhood of the origin, then the assumption that at least some 
accelerations, say i, and i,, are distinct from zem leads to a con- 
tradiction. In fact, for the determination of these accelerations we ob- 
tain the equations 

asto ‘ix”Bill + iiy”Pila 
- = Ql- ZkiNi )f;ix,a+;i;a a& 

aso 
-= Qi-zkiNi 

'i~"~i~1+~~yo~~2a 
ai, I/ ’ ‘ix 02 + bivoa 

where a!?‘? = S’(G,, 62, 0, 0, . . . . 01, and ;i,” and l;iy” are Ji, and ;iy, 

and where we have set 6, = . . . = Gm = 0. ‘lhe sumnation is performed over 
all i that correspond to the vanishing ii. Multiplying the equations by 
v1 and 6, respectively, adding the results, and taking into account that 
under the initial conditions v1 = . . . = v. = 0 So is a positive-definite 
quadratic form in i1, . . . J io, we obtain 

. 
’ 2s’” = Q1’vl + Q2’v2 - 2 kiNiI/z(irc2 + iiyo2 

Since So > 0, we have a contradiction which shows that either the 
presence of a minimum of S’ + Y at the origin guarantees that i~~ = . . . = . 
UC = 0, or the system cannot be in the state of rest nor in any kind of 
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motion that would obey the law of friction. In this case we shall say 

that the law of friction is contradictory. 

4. Let us consider the general case when at the initial instant 

Vl' es.8 VW are zero, (I < n. 

Suppose that the assumptions that i,, 

of the i 

. . . . G, are zero and that none 

_ yt1, *-*p i, is zero lead to the single proposition that i, = 

. . . = v 
P 
= 0(/L< 2V). Ill is will be the case if the first vI, ..,, up are 

selected from the velocities vir, V. V 
VX’ 

independent. 
CY’ ***’ 

vvy so that they are 

For the determination of the iPtl, . . . . ;,, one can use the equations 

where S is S, and where we have set G1 = . . . = 2;, = 0. It is not diffi- 

cult to see that the preceding equations can be written in the form 

If $1, . ..I Gn are a solution of these equations, then the motion 

. .* 
u1 = . . . z;* = 0, ;/‘;+I,..., 7-h (4.2) 

will agree with the law of friction, provided that the equations 

(i = I,..., IL) (4.3) 

in which iix*, ir. indicate that the values (4.2) have been 

substituted for 

*(dS/6'Gj)* 

ti, . . . . ir,,, are satisfied by the reactions R,i, R,i 
lying in the cone of friction 

(i = I,..., Y) (4.4) 

We shall show that the solution (4.2), which agrees with the law of 

friction, yields an isolated minimum of the function 
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i=I i=l 

In fact, 6(S+ \v), the variation of the function S+ Y in the 
neighborhood (4.2) will in consequence of (4.1) have the form 

i=1 

where X stands for terms of order higher than 
6*Y* represent all second-order terms in the 
S' and Y*. 

Since 

the second, and S'S' and 
expansion of the functions 

is au everywhere positive function of 6t;i,, S;iy, while 6*S is a positive- 
definite function of 6ii, it is not difficult to show by a method analo- 
gous to the one used in the preceding section, that a necessary and 
sufficient condition for the positiveness of S(S+ \r? is the non-negative- 
ness of the following homogeneous function of the first degree: 

+i kiNi- 

i=I 

This last inequality will be satisfied if Equations (4.3) can be satis- 
fied by reactions lying in the cone of friction. lhe proof of the last 
statement can be carried out in the same way as in the case of equi- 
librium, with the only difference that the generalized forces in Formula 
(3.4) have to be replaced by the quantities which are in the square 
brackets. 

It is not difficult to see that the non-negativeness of S%*guaran- 
tees the positive definiteness of 8*S* + 8*Y*as a function of the 

’ 
iP+1, 

. . . . u,. "Ibis in turn shows that the solution of Equations (4.1) is 
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unique in any region where the v,,+~, . . . , v7 do not vanish. In fact, the 
Jacobian of the left-hand sides of Equations (4.1) exists for all GP+1, 
. . . , Gn that do not make v,,+~, . . . , v7 equal to zero, and it coincides 
with the discriminant of the quadratic form S2S* + a2Y*, which is positive 
wherever it exists. 

If it is impossible to solve Equations (4.3) under the restrictions 
(4.4), but the last inequality is still valid for arbitrary G1, . . ., G,+, 
then the law of static friction is contradictory. 

Indeed, by adding to all the forces acting on the system the forces 
of inertia 

as * -- c J abi 
(i = IJ,..., p); -;z (i = p + I,..., n) 

3 

we consider our system in its initial condition vl, . . ., v,, = 0 subjected 
to the active forces 

and the unknown forces of friction at the points pl, . . . . p,. We thus 
obtain a substitute system which differs from the original one by the 
initial conditions, and also by the fact that the forces of inertia and 
friction which were computed under the assumptions that the i,, . . . . GV 
were zero, are replaced by active forces. ‘Ibis substitute system cannot 
have any nmotion”, 
law of friction. 

due to the active forces Qjo, that can agree with the 

’ 
In fact, for the determination of any nonzero iI’, 

. . . . v, ’ for the substitute system, we have the equations 

Multiplying these equations by ij’; adding the results, and taking 
into account the initial conditions (vl = . . . = v, = 01, we find that 
their solutions i1’, . . . , in satisfy the condition 

2S=-rI>o 
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Iherefore, the assumption that at least one of the ir,‘) . . . . in is 
different from zero is contradictory to the assumption that II, 0. 

Finally, we arrive at the conclusion that if one stops the moving 
system and adds to the active forces the forces of inertia and the known 
forces of friction, then one will necessarily have equilibrium (J, = 

. 
. . . = 21, = 0) for this substitute system when II >O, in all cases when 
the law of friction of the substitute system is not contradictory. It is 
not difficult to see the similarity between this statement and 
D' Alembert' s principle, for it differs from the latter only in the re- 
spect that we can draw conclusions about the equilibrium only after we 
have introduced the assumption i, = . . . = G,, = 0 and have obtained from 
it the frictional forces and the forces of inertia. 

‘Ihus, two conclusions can be made if the law of friction is not con- 
tradictory for the substitute system. 

1) From the non-negativeness of the function II it follows that the 
solution (4.2) is in accord with the law of friction. 

2) ‘lhe system which is in the state of rest under the influence of 
some active forces, frictional forces and forces of inertia, cannot have 
accelerations which correspond to these forces of inertia if it is under 
the influence of the same active forces and frictional forces. 

Ihe last assertion does not seem probable, and so we shall dwell upon 
the first. 

We shall explain what has been said with an example. Let us consider 
a rigid triangle with vertices A, B, C, which is pressed at these 
vertices against a rough immovable plane by forces Nl, N2, NJ normal to 
the plane. 

To the vertex A there is hinged an inertialess rod which has at the 
end D a mass I that is pressed against the plane by the force N4. Suppose 
that the rod is subjected to a force F. lying in the plane at a distance 
b from the point A and forming an angle a with the rod. 

If 1 bF sin u 1 > kN,=, where a = AD, then from the equation 

bF sin ct = (kN1 + mea)a 

one can find the force of inertia RE a and the frictional force kN,, 

which are directed perpendicularly to the rod in the opposite direction 
of the acceleration of its end. These are the inertia force and the 
frictional force found under the hypothesis that the accelerations of the 
vertices of the triangle are zero. If one now applies an active force 
kN, + mc a at the point D to the rod, and if one considers the substitute 
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system, then, when n > 0. the triangle and rod will necessarily be in 
equilibrium if the law of friction is not contradictory. The first pro- 
position confirms the admissiblity of this motion, while the second pro- 
position denies it. 

We note that it is always possible to find an R2 > 0 such that on the 
sphere ti12 + . . . + in2 = 19 2 the values of the function S + 'Twill be 
positive. 

Since S+ Y is continuous in the closed region 

h2+ . . . + q < H2 

and is equal to zero at the origin, it follows from a known theorem in 

analysis that this function attains a minimum within this region, and 

that this minimum, in accordance with the structure of the variation of 

S+ 'I!, will be an isolated minimum. 

5. As was pointed out by Appell 12 I, the function S' - Q,'V, - . . . - 
Q/G, differs from the value of the Gauss constraint only by a constant. 

Therefore, it is natural to give a general formulation of a principle 

for systems with friction that is analogous to Gauss's principle, and 

which will have the advantage that it excludes the cases of intrinsic 

paradoxes of the law of friction whenever they arise. 

Since, however, S + Y for real motion can take on also negative values, 

we shall not use the term constraint. 

Ihe quantity 
n T 

can be called the work of all the forces applied to the system with a 

virtual acceleration. By a virtual acceleration we shall mean, following 

Gauss, an acceleration which agrees with the conditions imposed on the 

system and in which qn+l = . . . = q,+k = 0. 

Formulation of the principle. If in a system with contacts one knows 

all maxima of the frictional forces, then the actual motion which agrees 

with the law of friction will differ from all neighboring conceivable 

motions by the fact that for a real motion the difference between the 

energy of acceleration and the work of all forces on the real accelera- 

tion will be smaller than that same difference is for any virtual accele- 

ration that is near a real one; furthermore, there will always exist at 

least one motion which satisfies this condition. 

6. Example. Let us consider a solid body which rests with a fiat part 
of its surface upon a rough plane. Following Zhukovskii [ 3 1, we shall 
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assume that the normal pressure Ni is known at every element of contact 
d. 

Zhukovskii has shown the following: 

a) If the body is rotated about any center Oi* the forces of friction 
can be reduced to some force Fi in all cases except for a ?W%tiOn of a 
unique point 0, the pole of friction, when the frictional forces reduce 

to a couple. 

b) Along any straight line in the plane there acts a unique force Fi. 

c) The moment of the force Pi about Oi is not less than the moment of 
any other frictional force about the same center. 

d) The frictional force which corresponds to any translational motion 
is unique and passes through the center of normal pressure. 

Utilizing these properties, Zhukovskii derives Theorem IV. 

Thearea IV. A necessary and sufficient condition for the equilibria 
of a solid body resting on a fixed plane is that the force P acting on 
the body along a line in the fixed plane be not greater than the force of 
friction in the direction of this line. If, however. a couple lying in 
the fixed plane acts on the body, then a necessary and sufficient condi- 
tion for the body to be in equilibrium is that the moment of this couple 
be not greater than the moment of the couple of friction obtained by re- 
volving the body about its pole of friction. 

Zhukovskii arrived at this theorem after he had established that the 
equations of motion, obtained from the theorem of angular momentum 
applied either to the centers Oi or to 0, or from the motion of the 
center of mass in the projection on the direction P, could have no solu- 
tion. It is not difficult to verify that the conditions of Zhukovskii’ s 
theorem coincide with the necessary and sufficient conditions for the non- 
negativeness of the function ‘4 for the given problem. In fact, from the 
condition of the theorem it can be seen, that as soon as these conditions 
are satisfied. the virtual work of the force P and of the frictional 
forces will always be nonpositive, From the proportionality of the fields 
of virtual accelerations and possible displacements, one can deduce the 
non-negativeness of Yr, If the ratio of the force P to the friction force 
FI, directed along the line of action of P. is equal to 1 P ( / 1 Fi 1 = ii Q 1, 
then if one applies at all elements of contact forces directed in the 
same wag as the force which balauces Fi, and have magnitudes X*Nida, 
where k is the coefficient of friction, then we obtain the force -hF= P, 
directed along the line of P, since the equations of the lines of action 
of the balancing forces are homogeneous in the components of the component 
forces. The proof is analogous for the case of a couple. 
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If the conditions of the theorem are violated, then it is impossible 
to make an analogous selection of forces. Indeed, in the case when we 
have a couple and a force applied at the center of pressure, the equation 
of moments relative to the pole of friction or the equation of equi- 
librium for the projection on P, will surely be violated. In the general 
case, the moment of arbitrary forces, applied at the points of contact 
and of absolute value less than the forces of friction, will be less in 
magnitude than the moment of Fi about the point Oi. In fact. it is equal 
to 

where ri is the distance of the element d from the center Oi. Therefore, 
a change in direction or a decrease of the moduli of the forces of fric- 
tion cau cause only a decrease of their moment about Oi. 

If the conditions of the theorem are violated, then one can use the 
following equations for the determination of the initial accelerations: 

. . 
mz, = P,- 

(gC - YE sin rp) rdrdip 

n kNi V (&, - r.2 sin ~r)~ _t (y, + TE cos rp)2 

. . 
my, = P,-- !\ kNi 

(y, + re sin cp) rdrd9 

0 . (6.1) 
23 2/ (2,-- re sin cp)z + (i, -i_ ra cos (F)~ 

I,E = Ph, -- 
r8 sin cp) r sin 9 + (i, -i_ PE cos v) r 60s t-p] rdrdg, 

--. 
1/ (iC - re sin cp)” + (&, + re cos (p)% 

where & and Ye are the accelerations of the center of msss of the body, 
JC its central moment of inertia, ci is the angular velocity, h,. the dfs- 
tance of the force P fmm the center of the mass, and the region D is 
the area of contact. 

The solution of the indicated equations is given by the minimum of the 
function 

+ \\ kiNi I/ c;Cc - rf3 sin cp)” + (y, + rs CoS v)” 
n 

This function possesses second-order partial differential derivatives 
at all points except at ;‘= = ic = r E 0. It must have a minimum at some 
point distinct from this one, because the conditions of the theorem of 
Zhukovskii are violated. Iience Equations (6.1) have a solution, and this 
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solution is unique. since any two points of the space of accelerations 
can be connected by a continuous curve which passes through the origin. 
Thus we have the following result: 

1) The necessary and sufficient conditions for the Zhukovskii equi- 
librium coincide with the necessary and sufficient conditions obtained 
by the direct application of the law of friction. 

2) The law of static friction is not contradictory in this case. 

3) The application of the law of friction, when the condition of 

equilibrium is violated, leads to a unique solution which agrees with 
the law of friction. 
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